A Stepwise Regression Method and Consistent Model Selection for High-dimensional Sparse Linear Models

نویسندگان

  • Ching-Kang Ing
  • Tze Leung Lai
چکیده

We introduce a fast stepwise regression method, called the orthogonal greedy algorithm (OGA), that selects input variables to enter a p-dimensional linear regression model (with p À n, the sample size) sequentially so that the selected variable at each step minimizes the residual sum squares. We derive the convergence rate of OGA and develop a consistent model selection procedure along the OGA path that can adjust for potential spuriousness of the greedily chosen regressors among a large number of candidate variables. The resultant regression estimate is shown to have the oracle property of being equivalent to least squares regression on an asymptotically minimal set of relevant regressors under a strong sparsity condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stepwise Regression Method and Consistent Model Selection for High-dimensional Sparse Linear Models by Ching-kang Ing

We introduce a fast stepwise regression method, called the orthogonal greedy algorithm (OGA), that selects input variables to enter a p-dimensional linear regression model (with p >> n, the sample size) sequentially so that the selected variable at each step minimizes the residual sum squares. We derive the convergence rate of OGA as m = mn becomes infinite, and also develop a consistent model ...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

FIRST: Combining forward iterative selection and shrinkage in high dimensional sparse linear regression

We propose a new class of variable selection techniques for regression in high dimensional linear models based on a forward selection version of the LASSO, adaptive LASSO or elastic net, respectively to be called as forward iterative regression and shrinkage technique (FIRST), adaptive FIRST and elastic FIRST. These methods seem to work effectively for extremely sparse high dimensional linear m...

متن کامل

A Note on the Lasso and Related Procedures in Model Selection

The Lasso, the Forward Stagewise regression and the Lars are closely related procedures recently proposed for linear regression problems. Each of them can produce sparse models and can be used both for estimation and variable selection. In practical implementations these algorithms are typically tuned to achieve optimal prediction accuracy. We show that, when the prediction accuracy is used as ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011